Stochastic continuity

(1) Continuous in probability

A random process {X(7)} is called continuous in

probability at 7 1if for any &> 0,

P(X(t+h)-X(@)|>5)>0

h—l

(2) Continuous in mean-square sense

A random process {X{:I)} 1s called mean-square (MS)

continuous at 7 1f

£—0

E{X(t+8)- XOF | >0



[s 1t possible to have a realization which 1s discontinuous at time 7 whereas

the random process 1s mean-square continuous?

x(74

time. 7



A random process {X(7){ is MS continuous if its
autocorrelation function 1s continuous.
Proot

E{X(t+8)-X(O] }: R(t+e.t+&)—2R(t+e.1)+ R(t.1)

If R(z.1,) 1scontinuous, then the RHS approaches zero as
¢ — 0. [Note that R(7.7,) 1sused in the above equation

to simply the expression. |



Suppose that MS continuous property holds

for every 7 in an interval /. It follows that
almost all samples (or realizations) of

f Jf(f)1 will be continuous for a particular

point of /. It does not follow, however, that

these samples (or realizations) of ‘L (I)1

will be continuous for every point n /.



It {X(r)} 1s MS continuous. then its mean 1s continuous, 1.€..

my(t+¢&)— m(1)
- g—=0 7

Proof

E{X(t+e)- X |2 EE[X(t+8) - X(0))F

Theretore, E [X(r +5)— X(r)] %-DO

[Note: Var(X)=EX")-|E(X)[ =0]



(3) Almost-surely continuous

A random process {}f(f)} 1s called almost-surely

continuous at 7 1f

|';.. HHI
P‘ o:lim | XC+ 7o) -X(1.0)=0 ‘ =3

. h—0 S
It {I(f)} 1s continuous in probability (mean-square
continuous, almost-surely continuous) at every 7, then 1t 1s
said to be continuous in probability (mean-square

continuous, almost-surely continuous).



Stochastic Convergence

A random sequence or a discrete-time random
process Is a sequence of random variables
X(®), X[(®), ..., X (®@),...} ={X (0)}, ® € Q.

e For a specific o, {X (w)} Is a sequence of
numbers that might or might not converge.
The notion of convergence of a random
sequence can be given several interpretations.




Sure convergence
(convergence everywhere)

The sequence of random variables

{X. (@)} converges surely to the random
variable X(w) If the sequence of functions
X (o) converges to X(w) as n —» oo for all
we () l.e.,

X (w) > X(w) asn —> o forall w e Q.




A sequence of real numbers x,, converges to the

real number x 1f, given any &> 0, we can always
specify an integer NV such that for all values of »

beyond NV we can guarantee that

X, —X| <&

Convergence of a sequence of numbers



Sure convergence requires that the sample

sequence corresponding to every @ converges.

However. 1t does not require that all the sample
sequences converge to the same value; that 1s the

sample sequences for different @ and ' can

converge to different values.



Almost-sure convergence
(Convergence with probability 1)

The sequence of random variables {.X,(®)} converges

almost surely to the random variable X( ) 1f the
sequence of functions X,(®) converges to X(w) as n —
«» for all @ € Q. except possibly on a set of probability

Zero: 1.e..

P{m: X, (o) 5 X (o) = 1.



With probability 0

= . R - . A i

N
Almost-sure convergence



Mean-square convergence

The sequence of random variables {X,.(®)} converges
in the mean square sense to the random variable X{( @)
it

E{(X;__r(m) — J'f(,-:?:.-))2 ‘ —>0 as n—ow



Convergence In probability

The sequence of random variables {X,(®)} converges
in probability to the random variable X{( ) 1f, for any

g0,

Pﬂ)f;__r[m) — X(m)‘ = 5] —0 as n—w



>4

Convergence in probability for the case where the limiting
random variable 1s a constant x



Convergence In distribution

The sequence of random variables {X,(®)} with

cumulative distribution functions {£,(x)}
converges in distribution to the random variable
X ) with cumulative distribution functions F(x)
if

F(x)—>F(x) as n—ox

tor all x at which F(x) 1s continuous.



Remarks

Convergence with probability one applies
to the individual realizations of the
random process. Convergence Iin
probability does not.

The weak law of large numbers Is an
example of convergence In probability.

The strong law of large numbers Is an
example of convergence with probability
1

The central limit theorem is an example
of convergence In distribution.



Weak Law of Large Numbers
(WLLN)

Let f( - ) be a density with finite mean ¢ and

finite variance. Let X» be the sample mean
of a random sample of si1ze » from f( - ). then

for any & =0,

Pl-e<X, —u<e]l—>1 as n—owx



Strong Law of Large Numbers
(SLLN)

Let f( - ) be a density with finite mean ¢ and

finite variance. Let X'» be the sample mean of
a random sample of size n from f( - ). then for

any & >0,

P limf:f::“\:l

FIl— 0T




The Central Limit Theorem

Let f( - ) be a density with mean ( and finite variance o -.

Let X, be the sample mean of a random sample of size »

trom f( - ). Then

X, -u

M 7
Jn

approaches the standard normal distribution as n approaches

infinity. [Note: It is equivalent to say that X, approaches a

normal distribution with expected value x and variance /7

as n approaches infinity. |



Venn diagram of relation of
types of convergence

©)

Sure Convergence A.S. Convergence ALS. Convergence

Convergence in Probability

Convergence in Distribution

Note that even
sure convergence
may not imply
mean square
convergence.



Example

Let o be selected at random from the mterval S = [0.
1]. where we assume that the probability that o 1s 1n
a subinterval of S 1s equal to the length of the

subinterval. For n=1. 2. ... we define the following

five sequences of random variables:

. .- (1] , :
U@)=o/n, V(o)=0|l- —] W (w)=w-€e" .
\

11

Y. (o) =cos2nrew, Z (0)=e "™

Determine the stochastic convergence of these random

sequences and identify the limiting random variable.



U(®) > U(®)=0 for every weS. Therefore, it

FI—
converges surely to a constant 0.
V () > V(w)=o forevery weS. Therefore, it

F—»OC
converges surely to a random variable which 1s
uniformly distributed over [0, 1].

-

S 1
= | —do=—.
“U g 311

[ o

E|7 (o) - o) |=E

\ 7

E KI, () — m)EJ - 0. Thus, the sequence V, (@)

CONVETICS in the mearn-squarc sCrlsc.



W (@) converges to 0 for o = 0, but diverges to

infinite for all other values of @. Theretore. 1t does
not converge.

Y (@) convergesto 1 for @=0and o= 1, but

oscillates between —1 and 1 for all other values of .
Therefore, 1t does not converge.



LZ(w=0)=¢e¢" >+x_ Z (®)—>0 forew=>(1/n).

Hi— H— 0

Plo> 0] =1.Thus, Z,_(®) converges almost surely to 0.

23

E:(Z,,:(m} —0)3] = Ele e | = e[ e dor= ° (1 e )

0 2n”
As n approaches infinity, the rightmost term 1n the above
equation approaches infinity. Therefore, the sequence Z (@)

does not converge in the mean square sense even though it
converges almost surely.

1




Ergodic Theorem

1S

S

A discrete time random process {X,. n=0.1, 2, ...

said to satisty an ergodic theorem if there exists a

random variable X" such that in some sense

-1
Z X/'n—> X
] N

i=0

The type of convergence determines the type of the
ergodic theorem. For example. 1f the convergence 1s
In mean square sense, the result 1s called a mean
ergodic theorem. If the convergence 1s with
probability one, it 1s called an almost sure ergodic

theorem.



A continuous time random process {.X(7)} 1s said to
satisty an ergodic theorem 1if there exists a random

variable X such that

] o ,
?J“ X(ndr - X

where again the type of convergence determines the

type of the ergodic theorem.



some constant. |

expectation of {]

theorem can ho!

d even :

Note that we only require the time average to
converge, however, 1t does not need to converge to
or example the common

ne random process. In fact, ergodic

or nonstationary random

processes where E[X(7)

does depend on time 7.



The Mean-Square Ergodic
Theorem

Let {X,} be a random process with mean function -
E[X,,] and covariance function Cx(k.j). (The

process need not to be even weakly stationary.)

Necessary and sufficient conditions for the

e&;istence of a constant m such that

1_

E‘— X . —m ‘%0 as 71— oo
=

are that

lim ZEU )=m, [im —

1w Moo H— ” i=l k=l

1




The above theorem shows that one can
expect a sample average to converge to a
constant In mean square sense If and
only If the average of the means
converges and If the memory dies out
asymptotically, that is, If the covariance
decreases as the lag increases.



Mean-Ergodic Processes

A random process {.X(7)} with constant

mean £ 1s said to be mean-ergodic 1f 1t
satisties
e .
Pi— | x(D)dr > puy=1.

HET - I —x




Strong or Individual Ergodic
Theorem

Let {X,,} be a strictly stationary random
process with E[X, ] < o. Then the sample

mean ZX{. /n converges to a limit with

=1

probability one.



Let {X(7)} be awide-sense stationary random

process with constant mean x and covariance
function C(7). Then {X(7)} 1s mean-ergidic if

and only if

] 2T ( | ,
EJ‘_H C(r)‘k ] - o7 .‘d T :Z 0. or equivalently,

1——\dr_>0



® [et {X(r)} beawide-sense stationary random

process with constant mean & and covariance

tunction C(7) and J‘Iv| C(r)|dr <=, then
{X(7)}1s mean-ergidic.

® [ect {X(7)} beawide-sense stationary random

process with constant mean & and covariance

function C(7) and C(0) <o and C(r) — 0,

|r|+x

then {X(7)} 1s mean-ergidic.



Examples of Stochastic
Processes

11d random process

A discrete time random process {X(t), t =
1, 2, ...} 1s said to be independent and
iIdentically distributed (iid) If any finite
number, say Kk, of random variables X(t,),
X(t,), ..., X(t,) are mutually independent
and have a common cumulative
distribution function F,(-) .




The joint cdf for X(t,), X(t,), ..., X(t,) is
given by
I:xl,xz,---,xk (Xl’xz”"’xk) = P(Xl < X, Xz < Xpyte Xk < Xk)

= Fy (Xl) Fy (Xz)"' Fy (Xk)

e It also yields
pxl,xz,---,xk (X1’X2""1Xk) = Py (Xl) Px (Xz)"' Px (Xk)

where p(x) represents the common
probability mass function.



Let {X,.n=0,1.2, ...} beasequence of
independent Bernoulli random variables with

parameter p. It 1s therefore an ud Bernoulli

random process and £ [IF?] = p and
Vm[ ] p(l—p).



